Development and validation of an ex vivo electron paramagnetic resonance fingernail biodosimetric method
نویسندگان
چکیده
منابع مشابه
Effects of water on fingernail electron paramagnetic resonance dosimetry
Electron paramagnetic resonance (EPR) is a promising biodosimetric method, and fingernails are sensitive biomaterials to ionizing radiation. Therefore, kinetic energy released per unit mass (kerma) can be estimated by measuring the level of free radicals within fingernails, using EPR. However, to date this dosimetry has been deficient and insufficiently accurate. In the sampling processes and m...
متن کاملVisualization of oxidative stress in ex vivo biopsies using electron paramagnetic resonance imaging.
PURPOSE The purpose of this study was to develop an X-Band electron paramagnetic resonance imaging protocol for visualization of oxidative stress in biopsies. METHODS The developed electron paramagnetic resonance imaging protocol was based on spin trapping with the cyclic hydroxylamine spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine and X-Band EPR imaging. Computer softw...
متن کاملElectron Paramagnetic Resonance
where E0 is the energy level without any external magnetic field B = B0êz. Again, g denotes the g factor[5]. For induced transitions, the selection rule is ∆ms = ±1. For unpaired electrons, however, this selection rule is observed for all transitions, as S = 12 and, hence, ms ∈ {− 12 , 2}. The previous formulas are based on the assumption that the response of the material on the external magnet...
متن کاملElectron Paramagnetic Resonance
Hyperpolarization via dissolution dynamic nuclear polarization (DNP) is a versatile method to dramatically enhance the liquid-state NMR signal of X-nuclei and can be used for performing metabolic and molecular imaging. It was recently demonstrated that instead of incorporating persistent radicals as source of unpaired electron spins, required for DNP, nonpersistent radicals can be photoinduced ...
متن کاملElectron Paramagnetic Resonance Theory
In 1921, Gerlach and Stern observed that a beam of silver atoms splits into two lines when it is subjected to a magnetic field [1–3]. While the line splitting in optical spectra, first found by Zeeman in 1896 [4, 5], could be explained by the angular momentum of the electrons, the s-electron of silver could not be subject to such a momentum, not to mention that an azimuthal quantum number l = 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Radiation Protection Dosimetry
سال: 2014
ISSN: 0144-8420,1742-3406
DOI: 10.1093/rpd/ncu129